84 CHAPITRE 4. INTEGRALES

Reste & trouver la valeur de a. En prenant f = 14, on obtient A(4) = am(A),
ce qui est le résultat voulu. ]

Revenons aux propriétés d’invariance de la mesure de Lebesgue.

Théoréme 4.12.3. Soit M € SLy(R) (c¢’est-a-dire que det M = 1). L’appli-
cation x — Mz laisse invariante la mesure de Lebesque sur RY.

Démonstration. Un théoréme d’algebre linéaire dit que tout élément de SL4(R)
peut s’écrire comme produit de matrices de transvections, c’est-a-dire de ma-
trices de la forme I, + aF;j avec i # j, ou Ej;; est la matrice dont tous les
coeflicients sont nuls, sauf celui en (4, j) qui vaut 1. Ainsi, il suffit de montrer le
résultat pour une matrice de transvection. Mais c’est alors un cas particulier
de lexercice 2 vu précédemment : on identifie R & R x R{2-d} on prend

p=XA"1et f(z) = alz,ej)e;. O

Théoréme 4.12.4. Soit M € My(R). Pour tout borélien A, on a
M (MA) = | det M|XI(A).
En particulier, pour tout ¢ € R, \(cA) = |c[?\4(A).

Démonstration. Dans le cas o M = diag(\, 1,...,1), on vérifie facilement la
formule lorsque A est un pavé : on a deux mesures qui coincident sur un 7-
systéme qui engendre la tribu, elles sont donc égales. Passons au cas ou M est
inversible. On peut alors écrire M = diag(det M,1,...,1)N, ou N € SL4(R).
Ainsi
M(MA) = M(diag(det M,1,...,1)NA) = |det M|A}(NA)
|det MINY(NTL(NA)) = |det M|XY(A).

Reste le cas ou M n’est pas inversible, dans ce cas det M = 0, donc il faut
montrer que \*(MA) = 0. Pour cela, il suffit de montrer que A\%(Im M) = 0.
Or Im M est un espace vectoriel de dimension au plus ¢ — 1, il existe donc une

application inversible qui envoie Im M dans R4"! x {0}. Comme R"~! x {0}
est de mesure nulle, Im M aussi. O



